Cadmium-induced oxidative stress in Saccharomyces cerevisiae.
نویسندگان
چکیده
The present study was undertaken to determine the effect of cadmium (Cd) on the antioxidant status of the yeast Saccharomyces cerevisiae. S. cerevisiae serves as a good eukaryotic model system for the study of the molecular mechanisms of oxidative stress. We investigated the adaptative response of S. cerevisiae exposed to Cd. Yeast cells could tolerate up to 100 microM Cd and an inhibition in the growth and viability was observed. Exposure of yeast cells to Cd showed an increase in malondialdehyde and glutathione. The activities of catalase, superoxide dismutase and glutathione peroxidase were also high in Cd-exposed cells. The incorporation of Cd led to significant increase in iron, zinc and inversely the calcium, copper levels were reduced. The results suggest that antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumably, these enzymes are essential for counteracting the pro-oxidant effects of Cd.
منابع مشابه
P-18: Protective Effect of Selenium- Enriched Saccharomyces Cerevisiae Cytoplasm and Cell Wall on Chronic Immobilization Stress-Induced Damages in Testis; Evidence for Apoptosis
Background Previous reports showed that immobilization stress (IMS) results in severe damages at spermatogenesis level. Present study was performed in order to evaluate the protective effect of selenium-enriched yeast fragments on IMS-induced derangements. MaterialsAndMethods For this purpose, 42 mature male Wister rats were assigned into 6 groups (7 rats in each group) including; control, stre...
متن کاملPolyhydroxyfullerene binds cadmium ions and alleviates metal-induced oxidative stress in Saccharomyces cerevisiae.
The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigat...
متن کاملGcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae.
An oxidative stress occurs when reactive oxygen species overwhelm the cellular antioxidant defenses. We have examined the regulation of protein synthesis in Saccharomyces cerevisiae in response to oxidative stress induced by exposure to hydroperoxides (hydrogen peroxide, and cumene hydroperoxide), a thiol oxidant (diamide), and a heavy metal (cadmium). Examination of translational activity indi...
متن کاملHeterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance
Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol str...
متن کاملMechanism (S) of Metal-Induced Apoptosis in Saccharomyces Cerevisiae
Heavy metals, such as copper and cadmium have been linked to a number of cellular dysfunctions in single and multicellular organisms that are associated with apoptosis. The yeast, Saccharomyces cerevisiae, provides a valuable model for elucidating apoptosis mechanisms, and this study extends that capability to Cu and Cd-induced apoptosis. We demonstrate that S. cerevisiae undergoes a glucose-de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 47 6 شماره
صفحات -
تاریخ انتشار 2010